Abstract

A novel triazole-bridged coumarin–benzimidazole-conjugated fluorescence sensor (4) has been developed for selective detection of Cd2+ over other competitive metal ions. The sensor exhibited quick “turn-on” responses upon interaction with a very low level of Cd2+ (14 nM). The photophysical changes in the complexation of Cd2+ with sensor 4 have been explained through the excited-state intramolecular proton transfer mechanism. The involvement of benzimidazole and triazole moieties in Cd2+ binding was confirmed by different spectroscopic techniques such as UV–vis, Fourier transform infrared, nuclear magnetic resonance, and ESI mass. The diameter of the circular shape of the sensor decreased upon complexation with Cd2+, which was confirmed by field-emission scanning electron microscopy. Furthermore, the quantum chemical (density functional theory) calculation supported the mechanism of interactions and the mode of binding of 4 toward Cd2+. The sensor was more effective for finding Cd2+ in two living cells, C6 (rat glial cell) and Hep G2 (human liver cell).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.