Abstract
The disturbance spectrum consists of disturbance patterns differing in type, size, intensity, and frequency. It is proposed that tree life‐history traits are adaptations to particular disturbance regimes. Four independent axes are proposed to define the dominant dimensions of tree strategy space: shade tolerance, tree height, capacity for vegetative reproduction, and seed dispersal distance. A fitness model was developed to elucidate interactions between the proposed life‐history traits. The model shows how alternate life‐history sets can coexist when disturbance patterns fluctuate in space and time. Variable disturbance regimes were shown, based on data and simulation results, to enhance species coexistence, as predicted. The strategy space model accurately predicts the number of common tree species for the eastern United States, boreal Canada, and southwestern piñon‐juniper woodlands. The model also provides an explanation for latitudinal gradients in tree species richness in North America and Europe. The proposed model predicts a relationship between disturbance characteristics and the species composition of a forest that allows for the coexistence of large numbers of species. The life‐history traits of size, growth rate, life span, shade tolerance, age of reproduction, seed dispersal distance, and vegetative reproduction are all incorporated into the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.