Abstract

Abstract This paper presents a strategy for stable topological in-operation-reconfiguration of cable-driven parallel robots. The term topological refers to the addition or removal of active cables and thus to changing the topology of the cable robot. During the whole reconfiguration process, the strategy guarantees the stability of the platform by considering a stability criterion based on the potential energy. In this context, two new formulations of a stable and minimal-stable workspace are introduced. Consequently, the theoretical foundations of kinematics and statics are first presented. Based on this, the limitations of conventional modeling approaches in the context of topological reconfiguration are outlined and necessary adaptations of the modeling are made. Afterward, impacts of topological adaptations are analyzed, followed by a formal description and a strategy for topological in-operation-reconfiguration. Finally, the reconfiguration strategy is applied to two simulation experiments, which show that the method is suitable for determining a stable reconfiguration sequence for the desired adaptation of the robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call