Abstract

Image stabilization is a process to smooth the unstable motion vector of video sequences to achieve its stabilization. Even though the classical image stabilization techniques seem already very mature so far, similar advances have not been extended to the quantum computing domain. In this study, we explore a novel quantum video framework and make a modest attempt to perform the image stabilization based on it by utilizing the quantum comparator and quantum image translation operations. The proposed method is capable of estimating the camera motion during exposure and compensating for the video jitter caused by the motion. In addition, the quantum properties, i.e., entanglement and parallelism, ensure that the quantum image stabilization is feasible and effective. Finally, a simple experiment to stabilize a four-frame jittered quantum video is implemented using Matlab based on linear algebra with complex vectors as quantum states and unitary matrices as unitary transforms to show the feasibility and merits of this proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.