Abstract
Among lithium-sulfur (Li-S) battery materials, sulfurized polyacrylonitrile (SPAN) has attracted substantial attention as a cathode material owing to its potential to bypass the problematic polysulfide formation and shuttling effect. Carbonate-based electrolytes have been eschewed compared with ether-based electrolytes because of their poor compatibility with Li metal anodes. In this work, we design and study an electrolyte comprising 0.8 M of lithium bis(trifluoromethanesulfonyl)imide, 0.2 M of lithium difluoro(oxalate)borate, and 0.05 M of lithium hexafluorophosphate in ethyl methyl carbonate/fluoroethylene carbonate = 3:1 v/v solution in the Li-S battery coupled with a Li metal anode and SPAN cathode. The well-designed carbonate-based electrolyte effectively stabilizes both electrodes, delivering high Coulombic efficiencies with stable cyclability. Studies using operando optical microscopy and atomic force microscopy demonstrate that dense, uniform Li deposition is promoted to suppress dendrite growth even at a high current density. Operando Raman spectroscopy reveals a reversible Li+ storage behavior in the SPAN structure through the cleavage of disulfide bonds and their redimerization during lithiation and delithiation. As a result, the proposed Li-S battery delivers an overall capacity retention of 73.5% over 1000 cycles, with high Coulombic efficiencies over 99.9%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.