Abstract
Preclinical optimization of compounds toward viable drug candidates requires an integrated understanding of properties that impact predictions of the clinically efficacious dose. The importance of optimizing half-life, unbound clearance, and potency and how they impact dose predictions are discussed in this letter. Modest half-life improvements for short half-life compounds can dramatically lower the efficacious dose. The relationship between dose and half-life is nonlinear when unbound clearance is kept constant, whereas the relationship between dose and unbound clearance is linear when half-life is kept constant. Due to this difference, we show that dose is more sensitive to changes in half-life than changes in unbound clearance when half-lives are shorter than 2 h. Through matched molecular pair analyses, we also show that the strategic introduction of halogens is likely to increase half-life and lower projected human dose even though increased lipophilicity does not guarantee extended half-life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.