Abstract

Here the first reproductive sterility system for the tephritid fruit fly pest, Anastrepha suspensa, is presented, based on lethality primarily limited to embryos heterozygous for a conditional lethal transgene combination. This tetracycline (Tet)-suppressible system uses a driver construct having the promoter from the newly isolated embryo-specific A. suspensa serendipity α gene linked to the Tet-transactivator. This was used to drive expression of a phosphomutated variant of the pro-apoptotic cell death gene, hid, from A. ludens, that was isolated, based on its identity to A. suspensa hid. The Alhid(Ala2) variant was shown to have the highest cell death activity in an in vitro A. suspensa cell death assay compared to the orthologous genes Ashid, Dmhid, and the variant Dmhid(Ala5). These cell death assays also allowed a determination of the most-efficient driver-effector cassette combinations for use in A. suspensa transformants, resulting in two hybrid strains exhibiting 100% lethality. One strain was 96% lethal in embryos in the absence of tetracycline, with none surviving past the first larval instar, which is critical for pests that are most damaging in late-larval stages. We demonstrate that the isolation and in vitro validation of species-specific promoters and lethal effector genes can greatly improve the efficiency of creating high-performance conditional lethality strains that may be extended to other insect pest species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.