Abstract
Denitrifying anaerobic methane oxidizing (DAMO) bacteria are newly discovered microorganisms that use methane as the electron donor to reduce nitrite into dinitrogen. They have potential value on nitrogen removal from wastewater. However, the oxygen exposure in engineering is considered one of the bottlenecks for DAMO engineering application. In this work, we cultured DAMO bacteria under oxic and anoxic conditions in a gas-lift sequencing batch reactor (GLSBR) to explore DAMO bacterial response to oxygen stress. Under oxic conditions (7.5–8 mg O2/L), the extension of hydraulic retention time (HRT) from 2 days to 4 days increased DAMO bacterial abundance by 3.8 times. Under anoxic conditions (0.2–0.5 mg O2/L), DAMO bacterial abundance increased by 30.1 times and were kept over 2.0 × 1011 copies g−1 wet sludge. During the enrichment, microbial aggregates were formed and DAMO bacteria tended to be distributed inside the aggregates. Notably, aerobic methanotrophs existed in the whole process, capable of consuming oxygen and providing a suitable environment for DAMO bacterial growth. Finally, DAMO bacteria were enriched and the relative abundance was 16.16%. This work provides new insights into DAMO bacterial enrichment and their application in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.