Abstract

To investigate the molecular basis of cold adaptation of enzymes, we determined the crystal structure of the tryptophan synthase α subunit (SfTSA) from the psychrophile Shewanella frigidimarina K14-2 by X-ray analysis at 2.6-Å resolution and also examined its physicochemical properties. SfTSA was found to have the following characteristics: (i) The stabilities against heat and denaturant of SfTSA were lower than those of an α subunit (EcTSA) from Escherichia coli. This lower equilibrium stability originated from both a faster unfolding rate and a slower refolding rate; (ii) the heat denaturation of SfTSA was completely reversible at pH 7.0 and the solubility of denatured SfTSA was higher than that of denatured EcTSA. The two-state transition of denaturation for SfTSA was highly cooperative, whereas the denaturation process of EcTSA was considerably more complex and (iii) the global structure of SfTSA was quite similar to those of α subunits from other species. Relative to those other proteins, SfTSA exhibited an increase in cavity volume and a decrease in the number of ion pairs. SfTSA also lacks a hydrogen bond near loop B, related to catalytic function. These characteristics of SfTSA might provide the conformational flexibility required for catalytic activity at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.