Abstract

We study countably infinite Markov decision processes (MDPs) with real-valued transition rewards. Every infinite run induces the following sequences of payoffs: 1. Point payoff (the sequence of directly seen transition rewards), 2. Total payoff (the sequence of the sums of all rewards so far), and 3. Mean payoff. For each payoff type, the objective is to maximize the probability that the liminf is non-negative. We establish the complete picture of the strategy complexity of these objectives, i.e., how much memory is necessary and sufficient for e-optimal (resp. optimal) strategies. Some cases can be won with memoryless deterministic strategies, while others require a step counter, a reward counter, or both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.