Abstract
The Diels-Alder equilibrium is a widely known process in chemistry that can be used to provide a thermoset structure with recyclability and reprocessability mechanisms. In this study, a commercial epoxy resin is modified through the integration of functional groups into the network structure to provide superior performance. The present study has demonstrated that it is possible to adapt the curing process to efficiently incorporate these moieties in the final structure of commercial epoxy-based resins. It also evaluates the impact that they have on the final properties of the cured composites. In addition, different approaches have been studied for the incorporation of the functional group, adjusting and adapting the stoichiometry of the system components due to the differences in reactivity caused by the presence of the incorporated reactive groups, with the objective of maintaining comparable ratios of epoxy/amine groups in the formulation. Finally, it has been demonstrated that although the Diels-Alder equilibrium responds under external conditions, such as temperature, different sets of parameters and behaviors are to be expected as the structures are integrated into the thermoset, generating new equilibrium temperatures. In this way, the present research has explored sustainable strategies to enable the recyclability of commercial thermoset systems through crosslinking control and its modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.