Abstract

Since the inception of the research field on carbon nanotubes (CNTs), there has been an enormous effort to understand how the tubes form and how to best garner their unique electronic and mechanical properties. It soon became apparent that in order to develop the next generation of functional materials, a way to modify the surface of the tubes and connect them was required. The development of the oxidation process with acids was the first revolution in the field of CNTs, potentially opening the door to an extensive library of modifications. Research progressed by integrating the nanotubes into composites at low concentrations with some success, but the goal of producing high nanotube component covalently cross-linked materials was still problematic. Two decades after the report by Sumio Ijima on their discovery, cross-linked CNT materials are still difficult to produce, and this has shifted the field towards a back-to-basics approach to try and solve the problem. One key problem identified was the presence of lattice fragments immobilized on the surface of the CNTs (Fig. 1.). The current methods of characterization such as X-ray photoelectron, Infrared and Raman spectroscopy are indirect and generally fail to distinguish between the surface attached functional groups and oxidized lattice fragments. A CNT washing technique has been developed to remove these fragments and any electrostatically attached products to allow pure covalent interactions with the surface of the nanotube (Wang et al., 2010). With an industry now thriving on the production of cheap functionalized carbon vapor deposition (CVD) CNTs, priced according to the percentage surface functionalization, and the decline in published materials on arc-produced CNTs, the need for effective characterization and quality control increases. It is the intention of this chapter to review some of the successful approaches used to crosslink CNTs with a focus on the importance of the chemistry and techniques involved, and highlight two areas of research we are currently investigating at Florida State University.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.