Abstract

Metal ion doped titanium oxide (TiO2) thin films, as bioactive coatings on metal or other implantable materials, can be used as surfaces for studying the cell biological properties of osteogenic and other cell types. Bulk crystallite phase distribution and surface carbon–oxygen constitution of thin films, play an important role in determining the biological responses of cells that come in their contact. Here we present a strategy to control the polarity of atomic interactions between the dopant metal and TiO2 molecules and obtain surfaces with smaller crystallite phases and optimal surface carbon–oxygen composition to support the maximum proliferation and adhesion of osteoblast cells. Our results suggest that surfaces, in which atomic interactions between the dopant metals and TiO2 were less polar, could support better adhesion, spreading and proliferation of cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call