Abstract

Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications. HIGHLIGHTS The current status and findings of research on direct current magnetic field in meat processing are presented. Several physical strategies to modify the microstructure and functional properties of MPs. The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.