Abstract

The use of oxygenated fuels in spark ignition engines (SIEs) has gained increasing attention in the last few years, especially when coming from renewable sources, due to the shortage of fossil fuels and global warming concern. Currently, the main substitute of gasoline is ethanol, which helps to reduce CO and HC emissions but presents a series of drawbacks such as a low heating value and a high hygroscopic tendency, which cause higher fuel consumption and corrosion problems, respectively. This paper shows the most relevant properties when replacing ethanol by renewable n-butanol, which presents a higher heating value and a lower hygroscopic tendency compared to the former. The test matrix carried out for this experimental study includes, on the one hand, ethanol substitution by n-butanol in commercial blends and, on the other hand, either ethanol or gasoline substitution by n-butanol in E85 blends (85% ethanol-15% gasoline by volume). The results show that the substitution of n-butanol by ethanol presents a series of benefits such as a higher heating value and a greater interchangeability with gasoline compared to ethanol, which makes n-butanol a promising fuel for SIEs in commercial blends. However, the use of n-butanol in E85 blends substituting either gasoline or ethanol may cause cold-start problems due to the lower vapor pressure of n-butanol. For this reason, a combined substitution of n-butanol by both gasoline and ethanol is proposed so that n-butanol can be used without start problems.

Highlights

  • The gradual depletion of fossil fuels along with concern about global warming have led to the use of biofuels in internal combustion engines (ICEs) [1] Among various biofuels, bio-alcohols have been investigated as alternative engine fuels because of their potential for improving engine performance and reducing pollutant emissions [2]

  • The main properties established in standards EN228 and CEN/TS 15293/2011 were measured for n-butanol–ethanol–gasoline blends and butanol–E85 blends

  • The substitution of ethanol by n-butanol presents a series of benefits such as a higher heating value or a lower hygroscopic tendency compared to ethanol blends, which makes n-butanol a promising fuel for spark ignition engines (SIEs)

Read more

Summary

Introduction

The gradual depletion of fossil fuels along with concern about global warming have led to the use of biofuels in internal combustion engines (ICEs) [1] Among various biofuels, bio-alcohols have been investigated as alternative engine fuels because of their potential for improving engine performance and reducing pollutant emissions [2]. Ethanol is normally used in spark ignition engines (SIEs) replacing gasoline [3,4,5,6]. Both of the aforementioned alcohols have been used in compression ignition engine (CIEs) as a diesel partial substitute [7,8,9,10]. Ethanol presents low lubricity [13], which can cause problems in gasoline direct-injection engines. A higher ethanol content would reduce the vapor pressure that leads to start problems [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call