Abstract

As time goes by, the need to move water is greater and this water will be pressurized. Layout flexibility, security, quality care, control, lower environmental impact and higher efficiency justify pressurized transport rather than natural gravitational water transport. On the negative side, we find the enormous amount of energy pressurized systems require with the associated negative economic and environmental impacts. Therefore, it is crucial to minimize these impacts and that only can be achieved by improving the energy efficiency of these systems. To achieve that final goal, the first step is to perform an assessment to estimate the margin of improvement from the actual performance of the system to the maximum achievable level of efficiency [1]. The second step is to perform an energy audit in order to identify exactly how the energy is used and where it is lost [2], with the third step being identification of the different actions that can be implemented in practice in a system. The final step is to perform the cost benefit analysis of the selected actions to prioritize execution.The focus of attention of this paper is on the third step, actions that can be classified in operational actions (do not require investments) and structural actions (require investments).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.