Abstract

Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.