Abstract
This study provides insight into the causes of inferior long-term stability of nanocomposites based on organic layered silicates (OLSs) used for cable mantles. A hierarchy was established by analyzing bentonite products and their respective polyolefin nanocomposites. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), gas adsorption, energy-dispersive spectroscopy (SEM-EDX), and infrared spectroscopy (IR) provided evidence for the adsorption of stabilizers onto the filler surface and thus their reduction in activity, promoting polymer oxidation. This behavior corresponds to the specific surface area of the incorporated OLS. Therefore, it can be stated that gas adsorption and XRD are especially useful for the evaluation of long-term photostability. It was revealed that photocatalytically active iron is of secondary importance since iron-rich bentonites still formed the most stable nanocomposite. This also applies to the Hofmann elimination products of the modifying agent, where higher contents do not accelerate the degradation process. No elimination products could be traced within the composites. Due to the polymer-filler interface being essential for long-term photostability, prior analysis of the filler surface properties can be used to estimate the stability of the respective nanocomposite as a rationale for product selection in the early stages of development. The reasons identified in this work for decreasing the long-term photostability of OLS nanocomposites compared with unfilled formulations is an important step toward increasing their stability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.