Abstract
The present article involves the electrochemical fundamentals of overvoltage/polarization of charge transfer and preceding diffusion, short-circuited corrosion cells, the mixed potential theory underlying submicrocells, differential de-aeration cells, and finally introduction of two methods, namely potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS), of determining corrosion current density $$i_{{{\text{corr}}}}$$ and polarization resistance $$R_{{\text{p}}}$$ to make strategies to raise the cathodic hydrogen overvoltage/anodic overvoltage with two examples: a sacrificial anode and a green corrosion inhibitor. Carl Wagner’s pioneering creative work on the mixed potential theory is addressed with particular emphasis that even nowadays constitutes the principle (classical paradigm) of both the linear polarization and the Tafel extrapolation methods. From the critical assessment of corrosion inhibitors, some unexplained questions are extracted and proposed as formidable future challenges to address in the electrochemistry of corrosion inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.