Abstract

Objective: The aim of this observational study was to evaluate the effects of two different protein intake regimes on feeding tolerance, in-hospital growth, anthropometric data and psychomotor outcome up to 24 months corrected age (CA) in extremely low birth-weight (ELBW; birth weight <1000 g) infants.Methods: During the period 2008–2013, 52 ELBW infants admitted at birth to two Neonatal Intensive Care Units of Emilia Romagna (Italy) were fed according to different protocols of protein fortification of human milk: an estimated protein intakes at maximum fortification levels of 3.5 gr/kg/day in the Standard Nutrition Population-SNP group (n = 26) and 4.8 g/kg/day in the Aggressive Nutrition Population-ANP group (n = 26). During hospitalization, infants' growth, biochemical indices of nutritional status, enteral intake, feeding tolerance, clinical history and morbidity were evaluated. After discharge, anthropometric data and psychomotor outcome, evaluated by Revised Griffiths Mental Development Scales (GMDS-R) 0–2 years, were assessed up to 24 months CA.Results: During hospitalization, the ANP group showed significantly higher weight (18.87 vs. 15.20 g/kg/day) and head circumference (0.70 vs. 0.52 cm/week) growth rates compared to SNP, less days of parenteral nutrition (7.36 ± 2.7 vs. 37.75 ± 29.6) and of hospitalization (60.0 ± 13.3 vs. 78.08 ± 21.32). After discharge, ANP infants had a greater head circumference compared to SNP (45.64 ± 0.29; 46.80 ± 0.31). Furthermore, the General Quotient of GMDS-R mean scores in the SNP group significantly decreased from 12 to 24 months CA, while no difference was seen in the ANP group.Conclusions: Increased protein intake may provide short and long term benefits in terms of growth and neurodevelopment in human milk-fed ELBW infants.

Highlights

  • The main goals of preterm infants’ nutrition are the achievement of postnatal growth rates similar to those of normal fetuses of the same gestational age, a mimic fetal body composition and neurodevelopmental outcomes comparable to term-born infants [1].In-hospital weight, length, and head circumference (HC) growth rates are positively correlated with neurodevelopment and, possibly, with an improved brain growth and neurological maturation in the preterm population [2, 3]

  • During the period 2008–2013, 52 extremely low birth-weight (ELBW) infants admitted at birth to two Neonatal Intensive Care Units of Emilia Romagna (Italy) were fed according to different protocols of protein fortification of human milk: an estimated protein intakes at maximum fortification levels of 3.5 gr/kg/day in the Standard Nutrition Population-Standard Nutrition Protocol (SNP) group (n = 26) and 4.8 g/kg/day in the Aggressive Nutrition Population-Aggressive Nutrition Protocol (ANP) group (n = 26)

  • During hospitalization, the ANP group showed significantly higher weight (18.87 vs. 15.20 g/kg/day) and head circumference (0.70 vs. 0.52 cm/week) growth rates compared to SNP, less days of parenteral nutrition (7.36 ± 2.7 vs. 37.75 ± 29.6) and of hospitalization (60.0 ± 13.3 vs. 78.08 ± 21.32)

Read more

Summary

Introduction

The main goals of preterm infants’ nutrition are the achievement of postnatal growth rates similar to those of normal fetuses of the same gestational age, a mimic fetal body composition and neurodevelopmental outcomes comparable to term-born infants [1].In-hospital weight, length, and head circumference (HC) growth rates are positively correlated with neurodevelopment and, possibly, with an improved brain growth and neurological maturation in the preterm population [2, 3]. Extrauterine growth restriction (EUGR), defined as weight, length, or HC ≤10th percentile of intra-uterine growth expectation for correspondent postmenstrual age at hospital discharge [4], is a negative prognostic factor for long-term neurodevelopment [2]. Adequate nutrition during hospitalization is fundamental in order to prevent EUGR and to optimize long-term growth and neurodevelopment in the preterm population. Due to their gastro-intestinal immaturity, very preterm infants often experience poor feeding tolerance during their stay in Neonatal Intensive Care Unit (NICU), and this contributes to hinder the achievement of optimal nutritional intakes over the first weeks of life [5]. Significant energy and nutrients deficits are frequently established during NICU stay, and inadequate protein and energy intakes may account for up to 45% of postnatal weight restriction in very-low-birth-weight preterm infants at hospital discharge [6, 7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call