Abstract

Effects of UVA and UVB radiation were evaluated on two cyanobacterial strains (Phormidium murrayi and Oscillatoria priestleyi) isolated from the McMurdo Ice Shelf, Antarctica. The two isolates showed some similarities, but also major differences in their qualitative and quantitative responses to ultraviolet radiation (UVR). Growth decreased with increasing UVR, but with a 5-fold (UVA) or 10-fold (UVB) greater effect on O. priestleyi than P. murrayi. In both isolates, cellular concentrations of phycobiliproteins (measured by in vivo absorbance), and to a lesser extent chlorophyll a, diminished with increasing UVR exposure. Spectral scans of methanol extracts indicated the presence of UVR-screening compounds in O. priestleyi but not P. murrayi; however, the absorbance per unit dry weight was low, and similar in cultures with and without UVR. Carotenoid pigments increased up to a threshold UVB flux and thereafter decreased. In both isolates, moderate UVA lessened the effect of growth inhibition by UVB, consistent with a UVA-activated repair mechanism. Comparative motility tests showed that O. priestleyi is a fast gliding species that can rapidly relocate in response to changes in ambient light, while P. murrayi is non-motile. The ability of O. priestleyi to escape UVR by gliding, and the greater ability of P. murrayi to tolerate UVA and UVB exposure, illustrate the differences in UVR survival strategies even between closely related species of cyanobacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call