Abstract
The video stream captured by an in-line holographic microscope can be analyzed on a frame-by-frame basis to track individual colloidal particles' three-dimensional motions with nanometer resolution. In this work, we compare the performance of two complementary analysis techniques, one based on fitting to the exact Lorenz-Mie theory and the other based on phenomenological interpretation of the scattered light field reconstructed with Rayleigh-Sommerfeld back-propagation. Although Lorenz-Mie tracking provides more information and is inherently more precise, Rayleigh-Sommerfeld reconstruction is faster and more general. The two techniques agree quantitatively on colloidal spheres' in-plane positions. Their systematic differences in axial tracking can be explained in terms of the illuminated objects' light scattering properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.