Abstract

The global trends of coal phase-out in response to climate change are meeting obstacles in China, where a stable operation of power-coal supply chains remains essential. How to guarantee the resilience of these supply chains during the low-carbon transition becomes a critical issue. This study aims to recommend corresponding strategies by modelling and analysis. A system dynamics model was developed to analyze scenarios of China’s power-coal supply from 2021 to 2060. The results indicated that, firstly, the capacity redundancy of coal mines will increase from 1.13 to 1.32 before 2045, with the rising power-coal demand and its volatility, followed by a sharp decrease after that, in which demand falls in all scenarios. Secondly, increasing coal stock in each link can effectively reduce capacity redundancy of coal mines and imports during the period of rising demand, resulting in 250 million tons of coal mine capacity reduction, but will lead to an opposite result when demand falls. Finally, under high demand fluctuations, coal transport capacity will become a key constraint. It is recommended that China must improve the capacity redundancy of coal mines, coal stock, and coal transport in the near-term, as well as enhance long-term planning to carefully coordinate these factors during the whole process of low-carbon transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call