Abstract
Fear of predators is an important drive for predator–prey interactions, which increases survival probability but cost the overall population size of the prey. In this paper, we have extended our previous work spatiotemporal dynamics of predator–prey interactions with fear effect by introducing the cross-diffusion. The conditions for cross-diffusion-driven instability are obtained using the linear stability analysis. The standard multiple scale analysis is used to derive the amplitude equations for the excited modes near Turing bifurcation threshold by taking the cross-diffusion coefficient as a bifurcation parameter. From the stability analysis of amplitude equations, the conditions for the emergence of various ecologically realistic Turing patterns such as spot, stripe, and mixture of spots and stripes are identified. Analytical results are verified with the help of numerical simulations. Turing bifurcation diagrams are plotted taking diffusion coefficients as control parameters. The effect of the cross-diffusion coefficients on the homogeneous steady state and pattern structures of the self-diffusive model is illustrated using the simulation techniques. It is also observed that the level of fear has stabilizing effect on the cross-diffusion induced instability and spot patterns change to stripe, then a mixture of spots and stripes and finally to the labyrinthine type of patterns with an increase in the level of fear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.