Abstract

Strong long-term international partnership in science, technology, finance and policy is critical for sustainable field experiments leading to successful commercial deployment of novel technology at community-scale. Although technologies already exist that can remediate arsenic in groundwater, most are too expensive or too complicated to operate on a sustained basis in resource-poor communities with the low technical skill common in rural South Asia. To address this specific problem, researchers at University of California-Berkeley (UCB) and Lawrence Berkeley National Laboratory (LBNL) invented a technology in 2006 called electrochemical arsenic remediation (ECAR). Since 2010, researchers at UCB and LBNL have collaborated with Global Change Program of Jadavpur University (GCP-JU) in West Bengal, India for its social embedding alongside a local private industry group, and with financial support from the Indo-US Technology Forum (IUSSTF) over 2012–2017. During the first 10 months of pilot plant operation (April 2016 to January 2017) a total of 540 m3 (540,000 L) of arsenic-safe water was produced, consistently and reliably reducing arsenic concentrations from initial 252 ± 29 to final 2.9 ± 1 parts per billion (ppb). This paper presents the critical strategies in taking a technology from a lab in the USA to the field in India for commercialization to address the technical, socio-economic, and political aspects of the arsenic public health crisis while targeting several sustainable development goals (SDGs). The lessons learned highlight the significance of designing a technology contextually, bridging the knowledge divide, supporting local livelihoods, and complying with local regulations within a defined Critical Effort Zone period with financial support from an insightful funding source focused on maturing inventions and turning them into novel technologies for commercial scale-up. Along the way, building trust with the community through repetitive direct interactions, and communication by the scientists, proved vital for bridging the technology-society gap at a critical stage of technology deployment. The information presented here fills a knowledge gap regarding successful case studies in which the arsenic remediation technology obtains social acceptance and sustains technical performance over time, while operating with financial viability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.