Abstract

The distribution of gallium and germanium over the available framework sites in the type-I clathrate Sr8Ga16Ge30(Pm\bar{3}n) has been determined by powder diffraction using several different combinations of resonant scattering data sets, collected at energies close to both the Ga and GeK-edges, and time-of-flight (TOF) neutron diffraction data. Based on a combined refinement using three X-ray data sets and a composition restraint, the fractional occupancies of the 6c, 16iand 24ksites by gallium are estimated to be 0.705 (5), 0.181 (3) and 0.376 (2), respectively. The required resonant scattering factors were determined by Kramers–Kronig transformation from X-ray absorption spectra. The results from refinements using single data sets and various combinations of data sets are compared. The high degree of scattering contrast that resonant diffraction can provide leads to very precise site occupancies. However, systematic errors in the resonant diffraction intensity data can considerably degrade the accuracy of the results. The use of a carefully chosen multiple-data-set strategy can minimize bias in the refinement results by reducing the correlations between site occupancies, atomic displacement parameters and histogram scale factors. The effect of errors in the resonant scattering factors on the refinement results was also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.