Abstract

Age dating of fingerprints could have a significant impact in forensic science, as it has the potential to facilitate the judicial process by assessing the relevance of a fingerprint found at a crime scene. However, no method currently exists that can reliably predict the age of a latent fingerprint. In this manuscript, time-of-flight secondary ion imaging mass spectrometry (TOF-SIMS) was used to measure the diffusivity of saturated fatty acid molecules from a fingerprint on a silicon wafer. It was found that their diffusion from relatively fresh fingerprints (t ≤ 96 h) could be modeled using an error function, with diffusivities (mm(2)/h) that followed a power function when plotted against molecular weight. The equation x = 0.02t(0.5) was obtained for palmitic acid that could be used to find its position in millimeters (where the concentration is 50% of its initial value or c0/2) as a function of time in hours. The results show that on a clean silicon substrate, the age of a fingerprint (t ≤ 96 h) could reliably be obtained through the extent of diffusion of palmitic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.