Abstract

Numerical simulations have become a cornerstone technology in the development of nanophotonic devices. Specifically, 3D finite-difference time domain (FDTD) simulations are widely used due to their flexibility and powerful design capabilities. More recently, FDTD simulations in conjunction with a design methodology called inverse design has become a popular way to optimize device topology, reducing a device’s footprint and increasing performance. We implement a commercial inverse design tool to generate complex grating couplers and explore a variety of grating coupler design methodologies. We compare the conventionally designed grating couplers to those generated by the inverse design tool. Finally, we discuss the limitations of the inverse design tool and how different design strategies for grating couplers affect inverse design performance, in terms of both computational cost and performance of the resulting device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.