Abstract

BackgroundIn resource-limited settings, monitoring and evaluation (M&E) of antiretroviral treatment (ART) programs often relies on aggregated facility-level data. Such data are limited, however, because of the potential for ecological bias, although collecting detailed patient-level data is often prohibitively expensive. To resolve this dilemma, we propose the use of the two-phase design. Specifically, when the outcome of interest is binary, the two-phase design provides a framework within which researchers can resolve ecological bias through the collection of patient-level data on a sub-sample of individuals while making use of the routinely collected aggregated data to obtain potentially substantial efficiency gains.MethodsBetween 2005–2007, the Malawian Ministry of Health conducted a one-time cross-sectional survey of 82,887 patients registered at 189 ART clinics. Using these patient data, an aggregated dataset is constructed to mimic the type of data that it routinely available. A hypothetical study of risk factors for patient outcomes at 6 months post-registration is considered. Analyses are conducted based on: (i) complete patient-level data; (ii) aggregated data; (iii) a hypothetical case–control study; (iv) a hypothetical two-phase study stratified on clinic type; and, (v) a hypothetical two-phase study stratified on clinic type and registration year. A simulation study is conducted to compare statistical power to detect an interaction between clinic type and year of registration across the designs.ResultsAnalyses and conclusions based solely on aggregated data may suffer from ecological bias. Collecting and analyzing patient data using either a case–control or two-phase design resolves ecological bias to provide valid conclusions. To detect the interaction between clinic type and year of registration, the case–control design would require a prohibitively large sample size. In contrast, a two-phase design that stratifies on clinic and year of registration achieves greater than 85% power with as few as 1,000 patient samples.ConclusionsTwo-phase designs have the potential to augment current M&E efforts in resource-limited settings by providing a framework for the collection and analysis of patient data. The design is cost-efficient in the sense that it often requires far fewer patients to be sampled when compared to standard designs.

Highlights

  • In resource-limited settings, monitoring and evaluation (M&E) of antiretroviral treatment (ART) programs often relies on aggregated facility-level data

  • Investigations of associations for patient-level outcomes based on aggregated data may suffer from ecological bias [19,20] and, in the worst-case scenario, the ecological fallacy where conclusions based on aggregated data are different than those that would have been drawn had a patient-level analysis been performed [21]

  • As an alternative we propose strategies for cost-efficient M&E of patient-level outcomes for national ART programs in resource-limited settings based on the two-phase study design [24,25,26,27]

Read more

Summary

Introduction

In resource-limited settings, monitoring and evaluation (M&E) of antiretroviral treatment (ART) programs often relies on aggregated facility-level data. The long-term success of national antiretroviral treatment (ART) programs relies on accurate and timely systems for monitoring and evaluation (M&E) Data from such systems are used for program planning, management of the commodity supply chain, to identify and address emerging implementation or clinical problems, and to facilitate epidemiologic analysis and operations research [1]. With these purposes in mind, M&E systems would ideally record detailed patient-level data on demographic characteristics, medical history, clinical information including virologic and CD4 counts at the time of ART initiation, and outcomes. Investigations of associations for patient-level outcomes based on aggregated data may suffer from ecological bias [19,20] and, in the worst-case scenario, the ecological fallacy where conclusions based on aggregated data are different than those that would have been drawn had a patient-level analysis been performed [21]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call