Abstract

The early detection of invasive fungal infection (IFD) is significant in order to decrease mortality in susceptible patients. There is, therefore, a need for sensitive and specific fungal species detection assays in a clinical laboratory for early targeted therapy. The isothermal amplification method may be useful for the screening of fungal isolates, especially in resource-poor settings. Therefore, our aim was to review the isothermal nucleic acid amplification methods and their applications in fungal pathogen detection. Out of 50 reported studies, 28, 12, 6, 2, and 2 studies used the isothermal-based assays of a loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), rolling circle amplification (RCA), multiple displacement amplification (MDA) and polymerase Spiral Reaction (PSR), respectively. Thirty-two studies used clinical samples, 18 pure culture, and four environmental samples. The diagnostic accuracy of isothermal nucleic acid amplification testing for pathogenic fungal was reported as high (sensitivity 0.89–1.0 and specificity 0.63–1.0) in all studies irrespective of the sample tested. Although the isothermal-based assays showed high sensitivity and specificity in reported studies, it is still poorer than that of PCR assays. However, improving the assay to make it simpler, more effective, and inexpensive compared with newer PCR methods are still needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call