Abstract

Intrauterine growth restriction affects up to 10% of all pregnancies, leading to fetal programming with detrimental consequences for lifelong health. However, no therapeutic strategies have so far been effective to ameliorate these consequences. Our previous study has demonstrated that a single dose of nutrients administered into the amniotic cavity, bypassing the often dysfunctional placenta via intra-amniotic administration, improved survival at birth but not birthweight in an intrauterine growth restriction rabbit model. The aim of this study was to further develop an effective strategy for intra-amniotic fetal therapy in an animal model. Intrauterine growth restriction was induced by selective ligation of uteroplacental vessels on one uterine horn of pregnant rabbits at gestational day 25, and fetuses were delivered by cesarean section on GD30. During the five days of intrauterine growth restriction development, three different methods of intra-amniotic administration were used: continuous intra-amniotic infusion by osmotic pump, multiple intra-amniotic injections, and single fetal intraperitoneal injection. Technical feasibility, capability to systematically reach the fetus, and survival and birthweight of the derived offspring were evaluated for each technique. Continuous intra-amniotic infusion by osmotic pump was not feasible owing to the high occurrence of catheter displacement and amnion rupture, while methods using two intra-amniotic injections and one fetal intraperitoneal injection were technically feasible but compromised fetal survival. Taking into account all the numerous factors affecting intra-amniotic fetal therapy in the intrauterine growth restriction rabbit model, we conclude that an optimal therapeutic strategy with low technical failure and positive fetal impact on both survival and birthweight still needs to be found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call