Abstract

The successful prediction and confirmation of unprecedentedly high-temperature superconductivity in compressed hydrogen-rich hydrides signify a remarkable advancement in the continuous quest for attaining room-temperature superconductivity. The recent studies have established a broad scope for developing binary and ternary hydrides and illustrated correlation between specific hydrogen motifs and high-T cs under high pressures. The analysis of the microscopic mechanism of superconductivity in hydrides suggests that the high electronic density of states at the Fermi level (EF), the large phonon energy scale of the vibration modes and the resulting enhanced electron-phonon coupling are crucial contributors towards the high-T c phonon-mediated superconductors. The aim of our efforts is to tackle forthcoming challenges associated with elevating the T c and reducing the stabilization pressures of hydrogen-based superconductors, and offer insights for the future discoveries of room-temperature superconductors. Our present Review offers an overview and analysis of the latest advancements in predicting and experimentally synthesizing various crystal structures, while also exploring strategies to enhance the superconductivity and reducing their stabilization pressures of hydrogen-rich hydrides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.