Abstract

This contribution presents a corpus of spatial descriptions and describes the development of a human-driven spatial language robot system for their comprehension. The domain of application is an eldercare setting in which an assistive robot is asked to "fetch" an object for an elderly resident based on a natural language spatial description given by the resident. In Part One, we describe a corpus of naturally occurring descriptions elicited from a group of older adults within a virtual 3D home that simulates the eldercare setting. We contrast descriptions elicited when participants offered descriptions to a human versus robot avatar, and under instructions to tell the addressee how to find the target versus where the target is. We summarize the key features of the spatial descriptions, including their dynamic versus static nature and the perspective adopted by the speaker. In Part Two, we discuss critical cognitive and perceptual processing capabilities necessary for the robot to establish a common ground with the human user and perform the "fetch" task. Based on the collected corpus, we focus here on resolving the perspective ambiguity and recognizing furniture items used as landmarks in the descriptions. Taken together, the work presented here offers the key building blocks of a robust system that takes as input natural spatial language descriptions and produces commands that drive the robot to successfully fetch objects within our eldercare scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call