Abstract

This paper presents technical developments for the detection of formaldehyde (CH2O) using laser-induced fluorescence. The easily accessible third harmonic of the Nd:YAG laser at 355 nm was used for excitation of formaldehyde. In order to investigate potential background fluorescence, e.g., from large molecules such as polyaromatic hydrocarbons, special attention was paid to investigating the possibility of scanning the wavelength of a single-mode Nd:YAG laser under the gain profile, approximately 3 cm(-1), on and off resonance. Furthermore, a technique for simultaneous detection of formaldehyde and OH using one laser system is presented. The single-mode Nd: YAG laser at 355 nm in combination with an optical parametric oscillator (OPO) laser tuned to 283 nm was used for simultaneous two-dimensional imaging of both species using one charge-coupled device (CCD) detector equipped with a dual filter image separator. The techniques are demonstrated with measurements in laboratory flames and the combined measurements are also demonstrated in an engine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.