Abstract

The microscopic determination of air void characteristics in hardened concrete, defined in EN 480-11 as the linear-traverse method, is an extremely time-consuming and tedious task. Over past decades, several researchers have proposed relatively expensive mechanical automated systems which could replace the human operator in this procedure. Recently, the appearance of new high-resolution flatbed scanners has made it possible for the procedure to be automated in a fully-computerized and thus cost-effective way. The results of our work indicate the high sensitivity of such image analysis automated systems firstly to the quality of sample surface preparation, secondly to the selection of the air void threshold value, and finally to the selection of the probe system. However, it can be concluded that in case of careful validation and the use of the approach which is proposed in the paper, such automated systems can give very good estimate of the air void system parameters, defined in EN 480-11. The amount of time saved by using such a procedure is immense, and there is also the possibility of using alternative stereological methods to assess other, perhaps also important, characteristics of air void system in hardened concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.