Abstract

Sulfate radical-advanced oxidation processes (SR-AOPs) are promising technologies for organic pollutants elimination. Heterogeneous metal-based catalysis has been widely studied and applied to activate peroxymonosulfate (PMS) for producing sulfate radicals. Developing highly efficient catalysts is crucial for future extensive use. Importantly, the catalytic activity is mainly determined by mass and electron transfer. This paper aims to overview the recent enhancement strategies for developing heterogeneous metal-based catalysts as effective PMS activators. The main strategies, including surface engineering, structural engineering, electronic modulation, external energy assistance, and membrane filtration enhancement, are summarized. The potential mechanisms for improving catalytic activity are also introduced. Finally, the challenges and future research prospects of heterogenous metal-based catalysis in SR-AOPs are proposed. This work is hoped to guide the rational design of highly efficient heterogenous catalysts in SR-AOPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call