Abstract

Both pathological injuries and clinical iatrogenic operations can lead to dentin demineralization, forming demineralized dentin matrix (DDM). Dentin demineralization activates endogenous matrix metalloproteinase (MMP) and cysteine cathepsin (CC), and the mechanical properties of DDM decrease, so DDM is prone to lose its structural integrity under the action of enzymatic degradation and mechanical destruction, which in turn results in the reduction of clinical functional value of DDM in dentin-resin bonding restoration. The administrations of dentin collagen cross-linking reagents and MMP/CC inhibitors are effective strategies to protect DDM structural integrity and achieve its clinical functional value. A variety of chemically synthesized reagents and plant-derived extracts are capable of significantly improving the mechanical properties of DDM and enhancing its enzymatic tolerance. However, the cytotoxicity caused by chemically synthesized reagents and the tooth staining aroused by plant extracts have considerably affected their clinical applicability. Protecting dentin collagen while exerting antibacterial properties is a new direction for future DDM protective agent research. Accordingly, from the perspectives of cross-linking reagents, enzyme inhibitors and compounds which possess the dual proper ties, this review discusses the latest research progress in DDM protection, and looks into its application prospects in dentin-resin bonding, in an attempt to provide reference for the clinical promotion of DDM protection strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call