Abstract

The cancer stem cell (CSC) hypothesis states that only a small fraction of a malignant cell population is responsible for tumor growth and relapse. Understanding the relationships between CSC dynamics and cancer progression may contribute to improvements in cancer treatment. Analysis of a simple discrete mathematical model has suggested that homeostasis in developing tissues is governed by a “quorum sensing” control mechanism, in which stem cells differentiate or proliferate according to feedback they receive from neighboring cell populations. Further analysis of the same model has indicated that excessive stem cell proliferation leading to malignant transformation mainly results from altered sensitivity to such micro-environmental signals. Our aim in this work is to expand the analysis to the dynamics of established populations of cancer cells and to examine possible therapeutic avenues for eliminating CSCs. The proposed model considers two populations of cells: CSCs, which can divide indefinitely, and differentiated cancer cells, which do not divide and have a limited lifespan. We assume that total cell density has negative feedback on CSC proliferation and that high CSC density activates CSC differentiation. We show that neither stimulation of CSC differentiation nor inhibition of CSC proliferation alone is sufficient for complete CSC elimination and cancer cure, since each of these two therapies affects a different subpopulation of CSCs. However, a combination of these two strategies can substantially reduce the population sizes and densities of all types of cancer cells. Therefore, we propose that in clinical trials, CSC differentiation therapy should only be examined in combination with chemotherapy. Our conclusions are corroborated by clinical experience with differentiating agents in acute promyelocytic leukemia and neuroblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call