Abstract

The charge transport system in an energy storage device (ESD) fundamentally controls the electrochemical performance and device safety. As the skeleton of the charge transport system, the "traffic" networks connecting the active materials are primary structural factors controlling the transport of ions/electrons. However, with the development of ESDs, it becomes very critical but challenging to build traffic networks with rational structures and mechanical robustness, which can support high energy density, fast charging and discharging capability, cycle stability, safety, and even device flexibility. This is especially true for ESDs with high-capacity active materials (e.g., sulfur and silicon), which show notable volume change during cycling. Therefore, there is an urgent need for cost-effective strategies to realize robust transport networks, and an in-depth understanding of the roles of their structures and properties in device performance. To address this urgent need, the primary strategies reported recently are summarized here into three categories according to their controllability over ion-transport networks, electron-transport networks, or both of them. More specifically, the significant studies on active materials, binders, electrode designs based on various templates, pore additives, etc., are introduced accordingly. Finally, significant challenges and opportunities for building robust charge transport system in next-generation energy storage devices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.