Abstract

PurposeElectromagnetic design utilising finite element or similar numerical methods is computationally expensive, thus efficient algorithms reducing the number of objective function calls to locate the optimum are sought. The balance between exploration and exploitation may be achieved using a reinforcement learning approach, as demonstrated previously. However, in practical design problems, in addition to finding the global optimum efficiently, information about the robustness of the solution may also be important. In this paper, the aim is to discuss the suitability of different search algorithms and to present their fitness to solve the optimization problem in conjunction with providing enough information on the robustness of the solution.Design/methodology/approachTwo novel strategies enhanced by the surrogate model based weighted expected improvement approach are discussed. The algorithms are tested using a two‐variable test function. The emphasis of these strategies is on accurate approximation of the shape of the objective function to accomplish a robust design.FindingsThe two novel strategies aim to pursue the optimal value of weights for exploration and exploitation throughout the iterative process for better prediction of the shape of the objective function.Originality/valueIt is argued that the proposed strategies based on adaptively tuning weights perform better in predicting the shape of the objective function. Good accuracy of predicting the shape of the objective function is crucial for achieving a robust design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.