Abstract

Recently, the development of new materials and devices has become the main research focus in the field of energy. Supercapacitors (SCs) have attracted significant attention due to their high power density, fast charge/discharge rate, and excellent cycling stability. With a lamellar structure, 2D transition metal dichalcogenides (2D TMDs) emerge as electrode materials for SCs. Although many 2D TMDs with excellent energy storage capability have been reported, further optimization of electrode materials and devices is still needed for competitive electrochemical performance. Previous reviews have focused on the performance of 2D TMDs as electrode materials in SCs, especially on their modification. Herein, the effects of element doping, morphology, structure and phase, composite, hybrid configuration, and electrolyte are emphatically discussed on the overall performance of 2D TMDs-based SCs from the perspective of device optimization. Finally, the opportunities and challenges of 2D TMDs-based SCs in the field are highlighted, and personal perspectives on methods and ideas for high-performance energy storage devices are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call