Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Highlights
The vertebrate skeleton is constituted by stiff bone organs with osseous tissue, bone marrow, endosteum, periosteum, cartilage, nerves, and vascular channels
Localized at the surface of bone tissue, these cells are responsible for bone formation by producing the organic bone matrix and directing the initiation of the mineralization process through the secretion of enzymes such as the alkaline phosphatase
The objective of this review is to describe and discuss the current strategies developed to potentiate healing bone processes after injuries, using biomolecules, cells, and biomaterials
Summary
The vertebrate skeleton is constituted by stiff bone organs with osseous tissue, bone marrow, endosteum, periosteum, cartilage, nerves, and vascular channels. Localized at the surface of bone tissue, these cells are responsible for bone formation by producing the organic bone matrix (un-mineralized osteoid matrix) and directing the initiation of the mineralization process through the secretion of enzymes such as the alkaline phosphatase. During these secretion and mineralization processes, around 10–20% of the osteoblasts remain alive and become embedded into the matrix that they have secreted, and mature into osteocytes (Rochefort et al, 2010). Beside standard therapies that include mechanical support (e.g., casts, nails, plates, and screws) to treat bone fractures/defects, other approaches currently developed and used to direct and further enhance bone restoration are primarily centered on the utilization of: (1) active elements or biomolecules, (2) cell-based treatments, and (3) biomaterials
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.