Abstract

Abstract The zeolitic imidazolate frameworks (ZIFs) ZIF-8 and ZIF-67 are well-known as belonging to the series of metal-organic frameworks. Using different types of metal ions in them, such as Zn2+ and Co2+ simultaneously, brings both advantages and disadvantages with respect to the carbonization process. For tailoring their properties, we suggest that the best approach involves control of the bimetallic ZIF-derived carbon nanoarchitecture, which is hybridized through the synergistic effects of each metal ion. In this study, the bimetallic ZIFs were designed by controlling the molar ratio of zinc (Zn2+) and cobalt (Co2+) ions, and the carbon nanoarchitecture was subsequently formed by a facile heat treatment and acid leaching. We demonstrate this approach to achieve tailored ZIF derived carbon nanoarchitectures with different pore sizes, surface areas, and degree of graphitization. These pave the way to finding the optimal carbon nanoarchitecture for specific applications such as Li-O2 air cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.