Abstract

Cryptography is fundamental to the provision of a wider notion of information security. Electronic information can easily be transmitted and stored in relatively insecure environments. This research was present to factor the prime power modulus \(N = p^r q\) for \(r \geq 2\) using the RSA key equation, if \(\frac{y}{x}\) is a convergents of the continued fractions expansions of \(\frac{e}{N - \left(2^{\frac{2r+1}{r+1}} N^{\frac{r}{r+1}} - 2^{\frac{r-1}{r+1}} N^{\frac{r-1}{r+1}}\right)}\). We furthered our analysis on \(n\) prime power moduli \(N_i = p_i^r q_i\) by transforming the generalized key equations into Simultaneous Diophantine approximations and using the LLL algorithm on \(n\) prime power public keys \((N_i,e_i)\) we were able to factorize the \(n\) prime power moduli \(N_i = p_i^r q_i\), for \(i = 1,....,n\) simultaneously in polynomial time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.