Abstract

Cryptography is fundamental to the provision of a wider notion of information security. Electronic information can easily be transmitted and stored in relatively insecure environments. This research was present to factor the prime power modulus \(N = p^r q\) for \(r \geq 2\) using the RSA key equation, if \(\frac{y}{x}\) is a convergents of the continued fractions expansions of \(\frac{e}{N - \left(2^{\frac{2r+1}{r+1}} N^{\frac{r}{r+1}} - 2^{\frac{r-1}{r+1}} N^{\frac{r-1}{r+1}}\right)}\). We furthered our analysis on \(n\) prime power moduli \(N_i = p_i^r q_i\) by transforming the generalized key equations into Simultaneous Diophantine approximations and using the LLL algorithm on \(n\) prime power public keys \((N_i,e_i)\) we were able to factorize the \(n\) prime power moduli \(N_i = p_i^r q_i\), for \(i = 1,....,n\) simultaneously in polynomial time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call