Abstract

Electrochemical water splitting (EWS) is a pivotal method for sustainable hydrogen (H2) generation, yet it faces challenges due to limited accessibility and high costs associated with precious metal electrocatalysts. Efforts in research have thus been directed toward developing cost-effective alternatives to drive widespread adoption. Transition metals (TMs) emerge as promising candidates to replace noble metal-based electrocatalysts in EWS, offering abundance and affordability. This review surveys recent advancements and innovative methodologies in designing TM-based electrocatalysts, focusing on strategies such as defect engineering of MXene. This approach demonstrates considerable potential in enhancing EWS technology. Moreover, the review underscores the necessity of comprehending the fundamental mechanisms and activity-limiting factors inherent in EWS. It advocates for catalyst engineering strategies, integration of theoretical calculations, and modern in situ characterization techniques to facilitate the commercialization of electrocatalysts for sustainable hydrogen production. By integrating recent progress and ongoing challenges, this review seeks to present insights into the frontier of TM-based electrocatalysts and their role in advancing the field of EWS toward a more sustainable future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.