Abstract
The strategic design of a robust supply chain has to determine the configuration of the supply chain so that its performance remains of a consistently high quality for all possible future conditions. The current modeling techniques often only consider either the efficiency or the risk of the supply chain. Instead, we define the strategic robust supply chain design as the set of all Pareto-optimal configurations considering simultaneously the efficiency and the risk, where the risk is measured by the standard deviation of the efficiency. We model the problem as the Mean–Standard Deviation Robust Design Problem (MSD-RDP). Since the standard deviation has a square root expression, which makes standard maximization algorithms based on mixed-integer linear programming non-applicable, we show the equivalency to the Mean–Variance Robust Design Problem (MV-RDP). The MV-RDP yields an infinite number of mixed-integer programming problems with quadratic objective (MIQO) when considering all possible tradeoff weights. In order to identify all Pareto-optimal configurations efficiently, we extend the branch-and-reduce algorithm by applying optimality cuts and upper bounds to eliminate parts of the infeasible region and the non-Pareto-optimal region. We show that all Pareto-optimal configurations can be found within a prescribed optimality tolerance with a finite number of iterations of solving the MIQO. Numerical experience for a metallurgical case is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.