Abstract

In this study we assessed the neural correlates of functional vision while varying patterns of light filtration. Four filter conditions used relatively flat filtering across the visible spectrum while one filter was a step filter that selectively absorbed violet light (wavelengths below about 415 nm). Neural effects were quantified by measuring the BOLD response ((T2*-based fMRI) while subjects performed a challenging visual task (judging gap direction in Landolt Cs that randomly varied in size). In general (based on p < 0.01 directional criterion not corrected for aggregated error), as filtering increased (less interference by bright light), brain activity associated with the task also increased. This effect, even using the most conservative statistics, was most evident when using the violet filter (especially for the older subjects) despite only reducing the very highest energy portion of the visible spectrum. This finding suggests that filtering can increase neural activity associated with functional vision; such effects might be achievable through filtering just the highest visible energy (violet).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.