Abstract
We demonstrate the design strategy of free-standing Au nanocatalysts by correlating their physicochemical characteristics with photocatalytic performance. By tailoring the particle size and surface characteristics, we found that small Au nanocatalysts called Au nanoclusters with discrete energy levels are more effective than large metallic Au nanoparticles, while the microenvironments (e.g., charge status and hydrophilicity/hydrophobicity) around the surface of Au-nanoclusters are crucial in determining the performance. With the optimized Au nanocatalyst, under visible light, decarboxylative radical addition reactions for C-C bond formation (i.e., Giese reaction) were first achieved with high yields and further utilized for the preparation of one of the bioactive γ-aminobutyric acid derivatives, pregabalin (Lyrica®), demonstrating its potential in pharmaceutical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.