Abstract

Maximum utilization of the full solar spectrum has been considered as a holy grail in the field of photocatalysis and has emerged important in the recent years, as the world needs to move towards renewable energy sources and also to maintain environmental health. In the search for a sustainable solution, we have come up with a strategic combination of materials, which can be active under all the three regions, namely ultraviolet (UV), visible and near infrared (NIR) of the sunlight. Specifically, we have developed a series of nanocomposites comprising of two dimensional nanosheets of zinc oxide (ZnO) and graphitic carbon nitride (GCN), and successfully coupled them with upconversion nanoparticles (UCNP). These nanocomposites have been successfully utilized for the photocatalytic chromium (Cr(VI)) reduction. The prepared nanocomposites exhibit an excellent photocatalytic activity toward reduction of Cr(VI) under different light region. A plausible mechanism for the photocatalytic process has been proposed based on the detailed study. This work is expected to pave way for the strategic design and development of many photocatalytic systems, which can utilize sunlight to the maximum extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call