Abstract

In the efforts to corroborate safer environmental CO2 mitigation strategies, herein, we elucidate engineered practices that convert the absorbed CO2 in a solid material and its utilization in the path of product synthesis. In this way, the cheaper lime material, the primary calcium resource, when exposed to CO2 capture, and the storage material (CO2CSM) prepared by using 1,2-ethylenediamine and 1, 4-butanediol resulted in the formation of controlled vaterite and aragonite CaCO3 polymorphs in their respective pure forms mediated by the functionalized CO2CSM. The investigation studies demonstrated that the obtained CO2CSM under the supercritical CO2 state has a higher uptake and release efficiency of CO2 equivalent to 3.730 and 3.17 mmol/g, respectively. Therefore, the conversion of raw materials depended on the amount of CO2CSM availed in the reaction and would be complete at the expense of supercritical CO2CSM in the solid-type reaction. The mechanism study explains the fundamental formation of products correlating to the amount of CO2CSM supplied in the reaction which would initiate the reaction, while the amine functional group of the material could stabilize and effectively control the transition of vaterite to aragonite phases of CaCO3. The so-obtained CaCO3 phases were tested for their antiwear and friction stability of the lubricant 500SN; vaterite and aragonite demonstrated good reinforcement of the mechanical properties of lubricants compared to the calcite type. Therefore, this system proposes a validation platform of using sequestrated CO2 to generate products with industrial commercialization benefits in the reinforcement of organic-based lubricants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call